APE1/REF-1 redox signaling regulates HIF1A-mediated CA9 expression in hypoxic pancreatic cancer cells : combination treatment in patient-derived pancreatic tumor model

If you need an accessible version of this item, please submit a remediation request.
Date
2017-12-14
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2018
Department
Department of Pharmacology & Toxicology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly disease characterized by aggressive metastasis and therapeutic resistance. Reactive stroma in pancreatic tumors contributes to tumor signaling, fibrosis, inflammation, and hypoxia. Hypoxia signaling creates a more aggressive phenotype with increased potential for metastasis and decreased therapeutic efficacy. Carbonic anhydrase IX (CA9) functions as part of the cellular response to hypoxia by regulating intracellular pH to promote cell survival. Apurinic/Apyrimidinic Endonuclease-1-Reduction/oxidation Effector Factor 1 (APE1/Ref-1) is a multi-functional protein with two major activities: endonuclease activity in DNA base excision repair and a redox signaling activity that reduces oxidized transcription factors, enabling them to bind target sequences in DNA. APE1/Ref-1 is a central node in redox signaling, contributing to the activation of transcription factors involved in tumor survival, growth, and hypoxia signaling. This work evaluates the mechanisms underlying PDAC cell responses to hypoxia and APE1/Ref-1 redox signaling control of hypoxia inducible factor 1 alpha (HIF1a), a critical factor in hypoxia-induced CA9 transcription. We hypothesized that obstructing the HIF-CA9 axis at two points via APE1/Ref-1 inhibition and CA9 inhibition results in enhanced PDAC cell killing under hypoxic conditions. We found that HIF1a-mediated induction of CA9 is significantly attenuated following APE1/Ref-1 knock-down or redox signaling inhibition in patient-derived PDAC cells and pancreatic cancer-associated fibroblast cells. Additionally, dual-targeting of APE1/Ref-1 redox signaling activity and CA9 activity results in enhanced acidification and cytotoxicity of PDAC cells under hypoxic conditions as well as decreased tumor growth in an ex-vivo 3-dimensional tumor co-culture model. Further experiments characterized novel analogs of clinically relevant drugs targeting the key enzymes in this pathway, resulting in improved potency. These results underscore the notion that combination therapy is essential and demonstrate the potential clinical utility of blocking APE1/Ref-1 and CA9 function for novel PDAC therapeutic treatment.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}