Discovery, Characterization, and Development of Small Molecule Inhibitors of Glycogen Synthase

dc.contributor.advisorHurley, Thomas D.
dc.contributor.authorTang, Buyun
dc.contributor.otherRoach, Peter J.
dc.contributor.otherGeorgiadis, Millie M.
dc.contributor.otherJohnson, Steven M.
dc.contributor.otherElmendorf, Jeffrey S.
dc.date.accessioned2020-07-07T15:40:45Z
dc.date.available2020-07-07T15:40:45Z
dc.date.issued2020-06
dc.degree.date2020en_US
dc.degree.disciplineBiochemistry & Molecular Biology
dc.degree.grantorIndiana Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractThe over-accumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Glycogen synthase (GS) is the rate-limiting enzyme for glycogen synthesis. Recent evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these diseases. Herein, we describe the discovery, characterization, and development of small molecule inhibitors of GS through a multicomponent study including biochemical, biophysical, and cellular assays. Adopting an affinity-based fluorescence polarization assay, we identified a substituted imidazole molecule (H23), as a first-in-class inhibitor of yeast glycogen synthase 2 (yGsy2) from the 50,000 ChemBridge DIVERSet library. Structural data derived from X-ray crystallography at 2.85 Å, and enzyme kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2. Medicinal chemistry efforts examining over 500 H23 analogs produced structure-activity relationship (SAR) profiles that led to the identification of potent pyrazole and isoflavone compounds with low micromolar potency against human glycogen synthase 1 (hGYS1). Notably, several of the isoflavones demonstrated cellular efficacy toward suppressing glycogen accumulation. In an alternative effort to screen inhibitors directly against human GS, an activity-based assay was designed using a two-step colorimetric approach. This assay led to the identification of compounds with submicromolar potency to hGYS1 from a chemical library comprised of 10,000 compounds. One of the hit molecules, hexachlorophene, was crystallized bound to the active site of yGsy2. The structure was determined to 3.15 Å. Additional kinetic, mutagenic, and SAR studies validated the binding of hexachlorophene in the catalytic pocket and its non-competitive mode of inhibition. In summary, these two novel assays provided feasible biochemical platforms for large-scale screening of small molecule modulators of GS. The newly-developed, potent analogs possess diverse promising scaffolds for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.en_US
dc.description.embargo2021-07-01
dc.identifier.urihttps://hdl.handle.net/1805/23200
dc.identifier.urihttp://dx.doi.org/10.7912/C2/1917
dc.language.isoen_USen_US
dc.subjectCell modelen_US
dc.subjectEnzymologyen_US
dc.subjectGlycogen synthaseen_US
dc.subjectHigh-throughput screeningen_US
dc.subjectSmall moleculesen_US
dc.subjectX-ray crystallographyen_US
dc.titleDiscovery, Characterization, and Development of Small Molecule Inhibitors of Glycogen Synthaseen_US
dc.typeDissertation
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tang_iupui_0104D_10447.pdf
Size:
7.55 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: