Sonic Hedgehog Signaling in Inner Ear Organoid Development

Date
2019-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Department of Anatomy & Cell Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Loss of the finite cochlear hair cells of the inner ear results in sensorineural deafness. Human cochlear hair cells do not regenerate, and there is no cure for deafness. Our laboratory has established a three-dimensional culture system for deriving functional sensory hair cells from human pluripotent stem cells. A major limitation of this approach is that derived hair cells exhibit a morphological and gene expression phenotype reflective of native vestibular hair cells. Previous studies have shown that establishment of localized domains of gene expression along the dorso-ventral axis of the developing otic vesicle is necessary for proper morphogenesis of both auditory and vestibular inner ear structures. Sonic hedgehog (SHH) signaling has been shown to play a key role in specification of the ventral otic vesicle and subsequent cochlear development. Here, SHH treatment was pursued as a potential strategy for inducing a patterning phenotype permissive to cochlear induction in vitro. Single-cell RNAsequencing analysis revealed that while treatment with the SHH pathway agonist Purmorphamine reduced expression of markers for the vestibular-yielding dorsal otic vesicle, upregulation of ventral otic marker genes was modest. More strikingly, the number of otic progenitors exhibiting a neuroprogenitor phenotype increased in response to Purmorphamine treatment. These results suggest that SHH pathway modulation in early-stage inner ear organoids may bias their differentiation toward a neural lineage at the expense of an epithelial lineage. The present study is the first to evaluate the patterning phenotype of human stem cell derived otic progenitors, and sheds light on the transcriptomic profile at this critical point of inner ear development. This study may also cultivate future efforts to derive cochlear cell types as well as inner ear neural cell types from human pluripotent stem cells, and contribute to the establishment of a more complete in vitro model of inner ear development.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2021-08-21