Multimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2013-04-05
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Regression models have been widely studied to investigate whether multimodal neuroimaging measures can be used as effective biomarkers for predicting cognitive outcomes in the study of Alzheimer's Disease (AD). Most existing models overlook the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to incorporate an L21 norm and/or a group L21 norm (G21 norm) in the regression models. Using ADNI-1 and ADNI-GO/2 data, we apply these models to examining the ability of structural MRI and AV-45 PET scans for predicting cognitive measures including ADAS and RAVLT scores. We focus our analyses on the participants with mild cognitive impairment (MCI), a prodromal stage of AD, in order to identify useful patterns for early detection. Compared with traditional linear and ridge regression methods, these new models not only demonstrate superior and more stable predictive performances, but also identify a small set of imaging markers that are biologically meaningful.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yan, Jingwen, Shannon L. Risacher, Sungeun Kim, Jacqueline C. Simon, Taiyong Li, Jing Wan, Hua Wang, Heng Huang, Andrew J. Saykin, and Li Shen. (2013, April 5). Multimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning. Poster session presented at IUPUI Research Day 2013, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}