Restrictions to Invariant Subspaces of Composition Operators on the Hardy Space of the Disk

dc.contributor.advisorCowen, Carl C.
dc.contributor.authorThompson, Derek Allen
dc.contributor.otherJi, Ronghui 
dc.contributor.otherKlimek, Slawomir
dc.contributor.otherBell, Steven R.
dc.contributor.otherMukhin, Evgeny
dc.date.accessioned2014-01-29T16:55:05Z
dc.date.available2014-01-29T16:55:05Z
dc.date.issued2014-01-29
dc.degree.date2013en_US
dc.degree.disciplineDepartment of Mathematical Sciencesen_US
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractInvariant subspaces are a natural topic in linear algebra and operator theory. In some rare cases, the restrictions of operators to different invariant subspaces are unitarily equivalent, such as certain restrictions of the unilateral shift on the Hardy space of the disk. A composition operator with symbol fixing 0 has a nested sequence of invariant subspaces, and if the symbol is linear fractional and extremally noncompact, the restrictions to these subspaces all have the same norm and spectrum. Despite this evidence, we will use semigroup techniques to show many cases where the restrictions are still not unitarily equivalent.en_US
dc.identifier.urihttps://hdl.handle.net/1805/3881
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2397
dc.language.isoen_USen_US
dc.subjectcompositionen_US
dc.subjectoperatoren_US
dc.subjecthardyen_US
dc.subjectsemigroupen_US
dc.subject.lcshInvariant subspaces -- Research -- Analysisen_US
dc.subject.lcshOperator theoryen_US
dc.subject.lcshHardy spacesen_US
dc.subject.lcshAlgebras, Linearen_US
dc.subject.lcshSemigroupsen_US
dc.subject.lcshOperator algebrasen_US
dc.subject.lcshHilbert spaceen_US
dc.subject.lcshFunctions of complex variablesen_US
dc.subject.lcshFunction spacesen_US
dc.subject.lcshMathematical analysisen_US
dc.titleRestrictions to Invariant Subspaces of Composition Operators on the Hardy Space of the Disken_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDDerekThompson.pdf
Size:
310.92 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: