Pyruvate Dehydrogenase Kinase 4 Deficiency and Hepatic Steatosis

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2009-06-23T21:37:16Z
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
Department
Department of Biochemistry & Molecular Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Regulation of the pyruvate dehydrogenase complex (PDC) is important for glucose homeostasis and control of fuel selection by tissues. Knocking out pyruvate dehydrogenase kinase 4 (PDK4), one of four kinases responsible for regulation of PDC activity, lowers blood glucose levels by limiting the supply of three carbon compounds for gluconeogenesis. Down regulation of PDK4 expression is also important for control of blood glucose by insulin. The primary goal was to determine whether PDK4 should be considered a target for the treatment of diabetes. A major concern is that inhibition of fatty acid oxidation by PDK4 deficiency may promote fat accumulation in tissues and worsen insulin sensitivity. This was examined by feeding wild type and PDK4 knockout mice a diet rich in saturated fat. Fasting blood glucose levels were lower, glucose tolerance was better, insulin sensitivity was greater, and liver fat was reduced in PDK4 knockout mice. The reduction in liver fat is contradictory to the finding that fibrate drugs increase PDK4 expression but ameliorate hepatic steatosis in rodents. To investigate this phenomenon, wild type and PDK4 knockout mice were fed the high saturated fat diet with and without clofibric acid. The beneficial effect of clofibric acid on hepatic steatosis was greater in the PDK4 knockout mice, indicating up regulation of PDK4 is not necessary and likely opposes the effect of clofibric acid on hepatic steatosis. Clofibric acid dramatically lowered the amount of hepatic CD36, a plasma membrane translocase required for fatty acid import, suggesting a novel mechanism for prevention of hepatic steatosis by fibrates. PDK4 deficiency had no effect on CD36 expression but reduced the enzymatic capacity for fatty acid synthesis, suggesting clofibric acid and PDK4 deficiency ameliorate hepatic steatosis by independent mechanisms. Investigation of the mechanism by which insulin regulates PDK4 expression revealed a novel binding site for hepatic nuclear factor 4α (HNF4α) in the PDK4 promoter. The stimulatory effect of HNF4α was sensitive to inhibition by Akt which is activated by insulin. The findings suggest PDK4 is a viable target for the treatment of hepatic steatosis and type 2 diabetes.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}