The roles of pancreatic hormones in regulating pancreas development and beta cell regeneration

dc.contributor.advisorAnderson, Ryan M.
dc.contributor.authorYe, Lihua
dc.contributor.otherMirmira, Raghu G.
dc.contributor.otherRoach, Peter J.
dc.contributor.otherFueger, Patrick T.
dc.contributor.otherSkalnik, David G.
dc.date.accessioned2016-01-11T17:47:19Z
dc.date.available2016-01-11T17:47:19Z
dc.date.issued2015-06-16
dc.degree.date2015
dc.degree.disciplineDepartment of Cellular & Integrative Physiology
dc.degree.grantorIndiana University
dc.degree.levelPh.D.
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractDiabetes mellitus is a group of related metabolic diseases that share a common pathological mechanism: insufficient insulin signaling. Insulin is a hormone secreted from pancreatic β cells that promotes energy storage and consequently lowers blood glucose. In contrast, the hormone glucagon, released by pancreatic α cells, plays a critical complementary role in metabolic homeostasis by releasing energy stores and increasing blood glucose. Restoration of β cell mass in diabetic patients via β cell regeneration is a conceptually proven approach to finally curing diabetes. Moreover, in situ regeneration of β cells from endogenous sources would circumvent many of the obstacles encountered by surgical restoration of β cell mass via islet transplantation. Regeneration may occur both by β cell self-duplication and by neogenesis from non-β cell sources. Although the mechanisms regulating the β cell replication pathway have been highly investigated, the signals that regulate β cell neogenesis are relatively unknown. In this dissertation, I have used zebrafish as a genetic model system to investigate the process of β cell neogenesis following insulin signaling depletion by various modes. Specifically, I have found that after their ablation, β cells primarily regenerate from two discrete cellular sources: differentiation from uncommitted pancreatic progenitors and transdifferentiation from α cells. Importantly, I have found that insulin and glucagon play crucial roles in controlling β cell regeneration from both sources. As with metabolic regulation, insulin and glucagon play counter-balancing roles in directing endocrine cell fate specification. These studies have revealed that glucagon signaling promotes β cell formation by increasing differentiation of pancreas progenitors and by destabilizing α cell identity to promote α to β cell transdifferentiation. In contrast, insulin signaling maintains pancreatic progenitors in an undifferentiated state and stabilizes α cell identity. Finally, I have shown that insulin also regulates pancreatic exocrine cell development. Insufficient insulin signaling destabilized acinar cell fate and impairs exocrine pancreas development. By understanding the roles of pancreatic hormones during pancreas development and regeneration can provide new therapeutic targets for in vivo β cell regeneration to remediate the devastating consequences of diabetes.en_US
dc.identifier.urihttps://hdl.handle.net/1805/8030
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2012
dc.language.isoen_USen_US
dc.subjectDiabetesen_US
dc.subjectAlpha cellen_US
dc.subjectBeta cellen_US
dc.subjectGlucagonen_US
dc.subjectPancreatic hormoneen_US
dc.subjectTransdifferentiationen_US
dc.subject.lcshDiabetes -- Pathophysiologyen_US
dc.subject.lcshDiabetes -- Researchen_US
dc.subject.lcshDiabetes -- Complicationsen_US
dc.subject.lcshMetabolism -- Disordersen_US
dc.subject.lcshInsulin -- Receptorsen_US
dc.subject.lcshInsulin -- Physiologyen_US
dc.subject.lcshGlucagonen_US
dc.subject.lcshGlucagon -- Physiological effecten_US
dc.subject.lcshPancreatic beta cellsen_US
dc.subject.lcshCell proliferationen_US
dc.subject.lcshDiabetes -- Treatmenten_US
dc.titleThe roles of pancreatic hormones in regulating pancreas development and beta cell regenerationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ye_iupui_0104D_10032.pdf
Size:
20.54 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: