Advanced Modeling of Longitudinal Spectroscopy Data

dc.contributor.advisorHarezlak, Jaroslaw
dc.contributor.authorKundu, Madan Gopal
dc.contributor.otherRandolph, Timothy W.
dc.contributor.otherSarkar, Jyotirmoy
dc.contributor.otherSteele, Gregory K.
dc.contributor.otherYiannoutsos, Constantin T.
dc.date.accessioned2014-11-17T18:06:23Z
dc.date.available2014-11-17T18:06:23Z
dc.date.issued2014
dc.degree.date2014en_US
dc.degree.disciplineBiostatisticsen
dc.degree.grantorIndiana Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractMagnetic resonance (MR) spectroscopy is a neuroimaging technique. It is widely used to quantify the concentration of important metabolites in a brain tissue. Imbalance in concentration of brain metabolites has been found to be associated with development of neurological impairment. There has been increasing trend of using MR spectroscopy as a diagnosis tool for neurological disorders. We established statistical methodology to analyze data obtained from the MR spectroscopy in the context of the HIV associated neurological disorder. First, we have developed novel methodology to study the association of marker of neurological disorder with MR spectrum from brain and how this association evolves with time. The entire problem fits into the framework of scalar-on-function regression model with individual spectrum being the functional predictor. We have extended one of the existing cross-sectional scalar-on-function regression techniques to longitudinal set-up. Advantage of proposed method includes: 1) ability to model flexible time-varying association between response and functional predictor and (2) ability to incorporate prior information. Second part of research attempts to study the influence of the clinical and demographic factors on the progression of brain metabolites over time. In order to understand the influence of these factors in fully non-parametric way, we proposed LongCART algorithm to construct regression tree with longitudinal data. Such a regression tree helps to identify smaller subpopulations (characterized by baseline factors) with differential longitudinal profile and hence helps us to identify influence of baseline factors. Advantage of LongCART algorithm includes: (1) it maintains of type-I error in determining best split, (2) substantially reduces computation time and (2) applicable even observations are taken at subject-specific time-points. Finally, we carried out an in-depth analysis of longitudinal changes in the brain metabolite concentrations in three brain regions, namely, white matter, gray matter and basal ganglia in chronically infected HIV patients enrolled in HIV Neuroimaging Consortium study. We studied the influence of important baseline factors (clinical and demographic) on these longitudinal profiles of brain metabolites using LongCART algorithm in order to identify subgroup of patients at higher risk of neurological impairment.en_US
dc.description.sponsorshipPartial research support was provided by the National Institutes of Health grants U01-MH083545, R01-CA126205 and U01-CA086368en_US
dc.identifier.urihttps://hdl.handle.net/1805/5454
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2785
dc.language.isoen_USen_US
dc.rightsCC0 1.0 Universal
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectSpectroscopyen_US
dc.subjectFunctional Data Analysisen_US
dc.subjectLongitudinal Functional Data Analysisen_US
dc.subjectBrownian Bridgeen_US
dc.subjectLongitudinal CARTen_US
dc.subjectLongitudinal Regression Treeen_US
dc.subjectHIVen_US
dc.subjectBrain metabolitesen_US
dc.subjectHIV neuroimaging consortiumen_US
dc.subjectLongPEERen_US
dc.subjectPEERen_US
dc.subjectDecomposition based penaltyen_US
dc.subjectNAAen_US
dc.subjectCreatineen_US
dc.subjectMyo-inositolen_US
dc.subjectCholineen_US
dc.subjectGlutamine and Glutamateen_US
dc.subjectWhite matteren_US
dc.subjectGray matteren_US
dc.subjectBasal gangliaen_US
dc.subjectLongCARTen_US
dc.subjectneurological disorderen_US
dc.subjectGlobal deficit scoreen_US
dc.subjectGSVDen_US
dc.subjectGeneral Singular Value Decompositionen_US
dc.subject.lcshBrain -- Magnetic resonance imaging -- Researchen_US
dc.subject.lcshMicrobial metabolites -- Researchen_US
dc.subject.lcshNervous system -- Infections -- Complicationsen_US
dc.subject.lcshHIV infections -- Complicationsen_US
dc.subject.lcshMyelinated neurofibrilsen_US
dc.subject.lcshRegression analysis -- Mathematical models -- Evaluationen_US
dc.subject.lcshFunctional analysis -- Research -- Methodologyen_US
dc.subject.lcshLongitudinal method -- Research -- Methodologyen_US
dc.subject.lcshResearch -- Methodologyen_US
dc.subject.lcshHealth -- Research -- Longitudinal studiesen_US
dc.subject.lcshTrees (Graph theory) -- Researchen_US
dc.subject.lcshBiometry -- Research -- Methodologyen_US
dc.subject.lcshCerebral cortexen_US
dc.subject.lcshCentral nervous system -- Abnormalitiesen_US
dc.subject.lcshSpectrum analysis -- Researchen_US
dc.subject.lcshHIV (Viruses) -- Research -- Analysisen_US
dc.subject.lcshCreatineen_US
dc.subject.lcshCholineen_US
dc.subject.lcshGlutamineen_US
dc.titleAdvanced Modeling of Longitudinal Spectroscopy Dataen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation_Kundu_2014_v2.pdf
Size:
802.51 KB
Format:
Adobe Portable Document Format
Description:
Dissertation
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: