Genera of integer representations and the Lyndon-Hochschild-Serre spectral sequence

dc.contributor.advisorRamras, Daniel
dc.contributor.authorNeuffer, Christopher
dc.contributor.otherJi, Ronghui
dc.contributor.otherMorton, Patrick
dc.contributor.otherBuse, Olguta
dc.date.accessioned2021-08-09T18:01:20Z
dc.date.available2021-08-09T18:01:20Z
dc.date.issued2021-08
dc.degree.date2021en_US
dc.degree.disciplineMathematical Sciencesen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractThere has been in the past ten to fifteen years a surge of activity concerning the cohomology of semi-direct product groups of the form $\mathbb{Z}^{n}\rtimes$G with G finite. A problem first stated by Adem-Ge-Pan-Petrosyan asks for suitable conditions for the Lyndon-Hochschild-Serre Spectral Sequence associated to this group extension to collapse at second page of the Lyndon-Hochschild-Serre spectral sequence. In this thesis we use facts from integer representation theory to reduce this problem to only considering representatives from each genus of representations, and establish techniques for constructing new examples in which the spectral sequence collapses.en_US
dc.identifier.urihttps://hdl.handle.net/1805/26396
dc.identifier.urihttp://dx.doi.org/10.7912/C2/52
dc.language.isoen_USen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleGenera of integer representations and the Lyndon-Hochschild-Serre spectral sequenceen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Genera of Integer Representations and the Lyndon-Hochschild-Serre Spectral Sequence.pdf
Size:
447.52 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: