Analysis of Latent Space Representations for Object Detection

Date
2024-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2024
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Deep Neural Networks (DNNs) successfully perform object detection tasks, and the Con- volutional Neural Network (CNN) backbone is a commonly used feature extractor before secondary tasks such as detection, classification, or segmentation. In a DNN model, the relationship between the features learned by the model from the training data and the features leveraged by the model during test and deployment has motivated the area of feature interpretability studies. The work presented here applies equally to white-box and black-box models and to any DNN architecture. The metrics developed do not require any information beyond the feature vector generated by the feature extraction backbone. These methods are therefore the first methods capable of estimating black-box model robustness in terms of latent space complexity and the first methods capable of examining feature representations in the latent space of black box models. This work contributes the following four novel methodologies and results. First, a method for quantifying the invariance and/or equivariance of a model using the training data shows that the representation of a feature in the model impacts model performance. Second, a method for quantifying an observed domain gap in a dataset using the latent feature vectors of an object detection model is paired with pixel-level augmentation techniques to close the gap between real and synthetic data. This results in an improvement in the model’s F1 score on a test set of outliers from 0.5 to 0.9. Third, a method for visualizing and quantifying similarities of the latent manifolds of two black-box models is used to correlate similar feature representation with increase success in the transferability of gradient-based attacks. Finally, a method for examining the global complexity of decision boundaries in black-box models is presented, where more complex decision boundaries are shown to correlate with increased model robustness to gradient-based and random attacks.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}