Characterizing alternative splicing and long non-coding RNA with high-throughput sequencing technology

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-10
Authors
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2018
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Several experimental methods has been developed for the study of the central dogma since late 20th century. Protein mass spectrometry and next generation sequencing (including DNA-Seq and RNA-Seq) forms a triangle of experimental methods, corresponding to the three vertices of the central dogma, i.e., DNA, RNA and protein. Numerous RNA sequencing and protein mass spectrometry experiments has been carried out in attempt to understand how the expression change of known genes affect biological functions in various of organisms, however, it has been once overlooked that the result data of these experiments are in fact holograms which also reveals other delicate biological mechanisms, such as RNA splicing and the expression of long non-coding RNAs. In this dissertation, we carried out five studies based on high-throughput sequencing data, in an attempt to understand how RNA splicing and differential expression of long non-coding RNAs is associated biological functions. In the first two studies, we identified and characterized 197 stimulant induced and 477 developmentally regulated alternative splicing events from RNA sequencing data. In the third study, we introduced a method for identifying novel alternative splicing events that were never documented. In the fourth study, we introduced a method for identifying known and novel RNA splicing junctions from protein mass spectrometry data. In the fifth study, we introduced a method for identifying long non-coding RNAs from poly-A selected RNA sequencing data. Taking advantage of these methods, we turned RNA sequencing and protein mass spectrometry data into an information gold mine of splicing and long non-coding RNA activities.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2019-05-06