Machine Vision Assisted In Situ Ichthyoplankton Imaging System

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2013-07-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2012
Department
Department of Computer and Information Science
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Recently there has been a lot of effort in developing systems for sampling and automatically classifying plankton from the oceans. Existing methods assume the specimens have already been precisely segmented, or aim at analyzing images containing single specimen (extraction of their features and/or recognition of specimens as single targets in-focus in small images). The resolution in the existing systems is limiting. Our goal is to develop automated, very high resolution image sensing of critically important, yet under-sampled, components of the planktonic community by addressing both the physical sensing system (e.g. camera, lighting, depth of field), as well as crucial image extraction and recognition routines. The objective of this thesis is to develop a framework that aims at (i) the detection and segmentation of all organisms of interest automatically, directly from the raw data, while filtering out the noise and out-of-focus instances, (ii) extract the best features from images and (iii) identify and classify the plankton species. Our approach focusses on utilizing the full computational power of a multicore system by implementing a parallel programming approach that can process large volumes of high resolution plankton images obtained from our newly designed imaging system (In Situ Ichthyoplankton Imaging System (ISIIS)). We compare some of the widely used segmentation methods with emphasis on accuracy and speed to find the one that works best on our data. We design a robust, scalable, fully automated system for high-throughput processing of the ISIIS imagery.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}