miR-21 Exacerbates Cytokine Induced Beta Cell Dysfunction via Inhibition of mRNAs Regulating Beta Cell Identity

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2020
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

A hallmark of diabetes is the loss of physical or functional Beta (β) cell mass. Maladaptive intrinsic β cell responses to islet inflammatory stress may exacerbate diabetes development, suggesting that β cells themselves may not be innocent bystanders in diabetes development. MicroRNAs (miRNAs), small RNAs that repress mRNA translation, serve as important regulators of β cell development and function. β cell microRNA 21 (miR-21) is increased in models of diabetes and I have identified Hypoxia Inducible Factor 1 Subunit Alpha (Hif1a) as a regulator of β cell miR-21. However, β cell effects of miR-21, remain poorly defined. To define the effects of miR-21, an in silico analysis of predictive targets of miR-21 identified multiple targets associated with maintenance of β cell identity, including the SMAD Family Member 2 (Smad2) mRNAs in the Transforming Growth Factor Beta 2 (Tgfb2) pathway. Based on this, I hypothesized that β cell miR-21 induces dysfunction via loss of β cell identity. To test this, I developed a tetracycline-on system of miR-21 induction in clonal β cells and human islets, as well as novel transgenic zebrafish and mouse models of inducible β cell specific miR-21 overexpression. β cell miR-21 induction increased aldehyde dehydrogenase (aldh1a3), but reduced expression of transcription factors associated with β cell identity, and glucose stimulated insulin secretion (GSIS), consistent with β cell dedifferentiation and dysfunction. Predicted targets Tgfb2 and Smad2 were reduced by miR-21 overexpression and confirmed to directly bind miR-21 using streptavidin-biotin pulldown. In vivo models of β cell miR-21 induction exhibited hyperglycemia, increased glucagon expression, and decreased insulin expression. These findings implicate miR-21- mediated reduction of mRNAs regulating β cell identity as a contributor to β cell dedifferentiation and dysfunction during islet inflammatory stress.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2022-05-19