EGCG-Encapsulated Halloysite Nanotube Modified-Adhesive for Longer-Lasting Dentin-Resin Interfaces

Date
2022-07
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2022
Department
Dentistry
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The degradation of the resin-dentin interface after restoration placement is multifactorial and can be attributed in part to matrix metalloproteinases (MMPs) enzymes associated with recurrent and secondary caries progression. This dissertation aimed to synthesize and characterize the effects of Epigallocatechin-3-gallate (EGCG) from green tea extract as an MMP-inhibitor loaded into a dental adhesive using slow therapeutic compound release nanotubes as a reservoir to allow sustained and slow release. Loading efficiency and drug release were evaluated using a UV-vis spectrometer. The effects on the degree of conversion (DC), polymerization conversion (PC), and Vickers Micro-Hardness (VHN) tests were performed. MMP mediated β-casein (bCN) cleavage rate was used to determine the potency of the eluates contained EGCG to inhibit MMP-9 activity. The results indicated that HNTs could hold about 21.35% (±4.2%) of the EGCG used in the encapsulation process. The addition of 7.5% HNT or 7.5% EGCG-encapsulated HNT adhesive groups did not alter the curing efficiency indicated by the degree of conversion, polymerization conversion, and surface hardness results compared to the control group (p> 0.05). A statistically significant influence of adding HNTs was found to slow down the EGCG release measured up to 8 weeks (p< 0.05). There was a significant decrease in the degradation of β-casein mediated by pre-activated MMP-9 exposed to eluates from EGCG adhesives compared to non-EGCG adhesive groups (p< 0.05). The results suggested that using HNTs for EGCG encapsulating can remedy the negative impact of EGCG on the adhesive’s polymerization and still have the MMP-inhibitory effect and longer release period. Dentin adhesive containing EGCG-encapsulated HNT may contribute to the long-term preservation of restorations through slow and controlled release to maintain the dentin-resin interface's integrity by inhibiting MMP activity.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}