Statistical Methods for Cancer Research

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-01
Authors
Language
American English
Embargo Lift Date
2025-02-02
Department
Committee Chair
Degree
Ph.D.
Degree Year
2024
Department
Biostatistics & Health Data Science
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Phase I/II clinical trial design is pivotal for achieving optimal therapeutic effect in immunotherapy and drug combination therapy for cancer treatment. Additionally, the identification of biomarkers associated with the risk of severe complications during cancer therapy is a crucial research area. This dissertation contains three related topics, which focus on adaptive Phase I/II clinical trial design and the identification of biomarkers relevant to cancer research. The first topic focuses on developing a two-stage nonparametric (TSNP) phase I/II clinical trial design to identify the optimal biological dose (OBD) of immunotherapy. We derive the closed-form estimates of the joint toxicity-efficacy response probabilities under the monotonic increasing constraint for the toxicity outcomes. The first stage of the design aims to explore the toxicity profile. The second stage aims to find the OBD through a utility function. The simulation results show that the TSNP design yields superior operating characteristics than the existing Bayesian parametric designs. User-friendly computational software is freely available to facilitate the application of the proposed design to real trials. The second topic focuses on dose optimization in drug-combination trials. We propose the Great Wall design, which employs a "divide-and-conquer" algorithm to address the issue of partial order of toxicity. It constructs a candidate set of the most promising dose combinations using the mean utility method. The patients assigned to the candidate set are followed to collect the survival outcomes and the final optimal dose combination is then select to maximize the survival benefit. A simulation study confirmed the desirable operating characteristics of the Great Wall design, compared with other conventional phase I/II designs for drug-combination trials. The last topic of my dissertation is prospective assessment of risk biomarkers of sinusoidal obstruction syndrome (SOS) after hematopoietic cell transplantation (HCT). We aimed to define risk groups for SOS occurrence using three proteins: L-Ficolin, Hyaluronic Acid (HA), and Stimulation-2 (ST2), by assessing SOS incidence at day 35 post-HCT, and overall survival (OS) at day 100 post-HCT. We conclude that L-Ficolin, HA, and ST2 levels measured as early as three days post-HCT improved risk stratification for SOS occurrence and OS.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2025-02-02