A Computational Study of the Mechanism for F1-ATPase Inhibition by the Epsilon Subunit

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2013
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2013
Department
Chemistry & Chemical Biology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The multi-protein complex of F0F1 ATP synthase has been of great interest in the fields of microbiology and biochemistry, due to the ubiquitous use of ATP as a biological energy source. Efforts to better understand this complex have been made through structural determination of segments based on NMR and crystallographic data. Some experiments have provided useful data, while others have brought up more questions, especially when structures and functions are compared between bacteria and species with chloroplasts or mitochondria. The epsilon subunit is thought to play a signi cant role in the regulation of ATP synthesis and hydrolysis, yet the exact pathway is unknown due to the experimental difficulty in obtaining data along the transition pathway. Given starting and end point protein crystal structures, the transition pathway of the epsilon subunit was examined through computer simulation.The purpose of this investigation is to determine the likelihood of one such proposed mechanism for the involvement of the epsilon subunit in ATP regulation in bacterial species such as E. coli.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}