Cell-Type Specific Function of STAT4 in an Animal Model of Multiple Sclerosis

Date
2023-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2023
Department
Biochemistry & Molecular Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Signal transducer and activator of transcription 4 (STAT4) is a critical regulator of inflammation. STAT4 promotes protective immunity and autoimmunity downstream of pro-inflammatory cytokines including IL-12 and IL-23. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), germ-line deletion of STAT4 in mice results in resistance to the development of inflammation and paralysis. In parallel, genome-wide association studies (GWAS) have identified polymorphisms in the STAT4 gene associated with susceptibility to several autoimmune diseases including MS demonstrating a potential role for STAT4 in human autoimmunity. Here, we examined cell-type requirements for STAT4 in EAE. Using conditional Stat4 mutant mice, we found that mice lacking Stat4 in T cells and CD11c+-expressing cells are resistant to EAE, while mice lacking Stat4 in Lyz2+-expressing cells are susceptible to EAE. STAT4 is expressed and activated in CD11c+ dendritic cells (DCs) in the CNS during peak disease severity. Stat4fl/flCD11cCre mice exhibit significantly decreased classical dendritic cell (cDC) expansion in the CNS and this correlates with diminished numbers of infiltrated T cells in the CNS and decreased inflammatory cytokine production. Adoptive transfer of wild type but not Stat4-/- or Il23r-/- DCs into Stat4fl/flCD11cCre rescues the development of EAE. Transferred Il23r-/- DCs were retained in the lymph nodes suggesting that IL-23-STAT4 signaling promotes their migration to and expansion in the CNS. Single-cell RNA-seq analyses of CNS DCs from WT and Stat4fl/flCD11cCre mice identified cDC populations with STAT4-dependent gene expression and migratory phenotypes. Collectively, our results demonstrate that STAT4 in cDCs is required for expansion in the CNS, the development of encephalitogenic T cells, and the clinical symptoms of EAE. Thus, our study reveals previously unrecognized functions of STAT4 in cDCs that provide mechanistic insight into CNS autoimmunity and provide a foundation for identifying new therapeutic targets for the disease.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2026-01-02