Real-time road traffic events detection and geo-parsing

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-08-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
M.S.
Degree Year
2018
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

In the 21st century, there is an increasing number of vehicles on the road as well as a limited road infrastructure. These aspects culminate in daily challenges for the average commuter due to congestion and slow moving traffic. In the United States alone, it costs an average US driver $1200 every year in the form of fuel and time. Some positive steps, including (a) introduction of the push notification system and (b) deploying more law enforcement troops, have been taken for better traffic management. However, these methods have limitations and require extensive planning. Another method to deal with traffic problems is to track the congested area in a city using social media. Next, law enforcement resources can be re-routed to these areas on a real-time basis.
Given the ever-increasing number of smartphone devices, social media can be used as a source of information to track the traffic-related incidents. Social media sites allow users to share their opinions and information. Platforms like Twitter, Facebook, and Instagram are very popular among users. These platforms enable users to share whatever they want in the form of text and images. Facebook users generate millions of posts in a minute. On these platforms, abundant data, including news, trends, events, opinions, product reviews, etc. are generated on a daily basis. Worldwide, organizations are using social media for marketing purposes. This data can also be used to analyze the traffic-related events like congestion, construction work, slow-moving traffic etc. Thus the motivation behind this research is to use social media posts to extract information relevant to traffic, with effective and proactive traffic administration as the primary focus. I propose an intuitive two-step process to utilize Twitter users' posts to obtain for retrieving traffic-related information on a real-time basis. It uses a text classifier to filter out the data that contains only traffic information. This is followed by a Part-Of-Speech (POS) tagger to find the geolocation information. A prototype of the proposed system is implemented using distributed microservices architecture.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}