Multi-spectral Fusion for Semantic Segmentation Networks

dc.contributor.advisorEl-Sharkawy, Mohamed
dc.contributor.authorEdwards, Justin
dc.contributor.otherKing, Brian
dc.contributor.otherKim, Dongsoo
dc.date.accessioned2023-05-31T13:47:06Z
dc.date.available2023-05-31T13:47:06Z
dc.date.issued2023-05
dc.degree.date2023en_US
dc.degree.disciplineElectrical & Computer Engineeringen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelM.S.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractSemantic segmentation is a machine learning task that is seeing increased utilization in multiples fields, from medical imagery, to land demarcation, and autonomous vehicles. Semantic segmentation performs the pixel-wise classification of images, creating a new, seg- mented representation of the input that can be useful for detected various terrain and objects within and image. Recently, convolutional neural networks have been heavily utilized when creating neural networks tackling the semantic segmentation task. This is particularly true in the field of autonomous driving systems. The requirements of automated driver assistance systems (ADAS) drive semantic seg- mentation models targeted for deployment on ADAS to be lightweight while maintaining accuracy. A commonly used method to increase accuracy in the autonomous vehicle field is to fuse multiple sensory modalities. This research focuses on leveraging the fusion of long wave infrared (LWIR) imagery with visual spectrum imagery to fill in the inherent perfor- mance gaps when using visual imagery alone. This comes with a host of benefits, such as increase performance in various lighting conditions and adverse environmental conditions. Utilizing this fusion technique is an effective method of increasing the accuracy of a semantic segmentation model. Being a lightweight architecture is key for successful deployment on ADAS, as these systems often have resource constraints and need to operate in real-time. Multi-Spectral Fusion Network (MFNet) [1] accomplishes these parameters by leveraging a sensory fusion approach, and as such was selected as the baseline architecture for this research. Many improvements were made upon the baseline architecture by leveraging a variety of techniques. Such improvements include the proposal of a novel loss function categori- cal cross-entropy dice loss, introduction of squeeze and excitation (SE) blocks, addition of pyramid pooling, a new fusion technique, and drop input data augmentation. These improve- ments culminated in the creation of the Fast Thermal Fusion Network (FTFNet). Further improvements were made by introducing depthwise separable convolutional layers leading to lightweight FTFNet variants, FTFNet Lite 1 & 2. 13 The FTFNet family was trained on the Multi-Spectral Road Scenarios (MSRS) and MIL- Coaxials visual/LWIR datasets. The proposed modifications lead to an improvement over the baseline in mean intersection over union (mIoU) of 2.92% and 2.03% for FTFNet and FTFNet Lite 2 respectively when trained on the MSRS dataset. Additionally, when trained on the MIL-Coaxials dataset, the FTFNet family showed improvements in mIoU of 8.69%, 4.4%, and 5.0% for FTFNet, FTFNet Lite 1, and FTFNet Lite 2.en_US
dc.identifier.urihttps://hdl.handle.net/1805/33368
dc.identifier.urihttp://dx.doi.org/10.7912/C2/3159
dc.language.isoen_USen_US
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectNeural Networksen_US
dc.subjectSemantic Segmentationen_US
dc.subjectSensory Fusionen_US
dc.subjectThermal Imageryen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectCNNen_US
dc.titleMulti-spectral Fusion for Semantic Segmentation Networksen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JCE_Thesis_FTFNet.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: