Effect of coronary perivascular adipose tissue on vascular smooth muscle function in metabolic syndrome

Date
2013-12-19
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2013
Department
Department of Cellular & Integrative Physiology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Obesity increases cardiovascular disease risk and is associated with factors of the “metabolic syndrome” (MetS), a disorder including hypertension, hypercholesterolemia and/or impaired glucose tolerance. Expanding adipose and subsequent inflammation is implicated in vascular dysfunction in MetS. Perivascular adipose tissue (PVAT) surrounds virtually every artery and is capable of releasing factors that influence vascular reactivity, but the effects of PVAT in the coronary circulation are unknown. Accordingly, the goal of this investigation was to delineate mechanisms by which lean vs. MetS coronary PVAT influences vasomotor tone and the coronary PVAT proteome. We tested the hypothesis that MetS alters the functional expression and vascular contractile effects of coronary PVAT in an Ossabaw swine model of the MetS. Utilizing isometric tension measurements of coronary arteries in the absence and presence of PVAT, we revealed the vascular effects of PVAT vary according to anatomical location as coronary and mesenteric, but not subcutaneous adipose tissue augmented coronary artery contractions to KCl. Factors released from coronary PVAT increase baseline tension and potentiate constriction of isolated coronary arteries relative to the amount of adipose tissue present. The effects of coronary PVAT are elevated in the setting of MetS and occur independent of endothelial function. MetS is also associated with substantial alterations in the coronary PVAT proteome and underlying increases in vascular smooth muscle Ca2+ handling via CaV1.2 channels, H2O2-sensitive K+ channels and/or upstream mediators of these ion channels. Rho-kinase signaling participates in the increase in coronary artery contractions to PVAT in lean, but not MetS swine. These data provide novel evidence that the vascular effects of PVAT vary according to anatomic location and are influenced by the MetS phenotype.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}