Effects of Bioactive Glass Scaffold and BMP-2 in Segmental Defects

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2013-04-05
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Reconstruction of segmental defects in the load-bearing area has long been a challenge in orthopaedics. We have demonstrated the feasibility of a biodegradable load-bearing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself. Furthermore, a recent review on BMP-2 revealed greater risks in radiculities, ectopic bone formation, osteolysis and poor global outcome in association with the use of BMP-2 for spinal fusion. The aims of this study were to evaluate the potential use of a more osteoconductive material 13-93 bioactive glass and the potential side effects of locally delivered BMP-2 on adjacent bones. 13-93 glass scaffolds were fabricated by indirect selective laser sintering and implanted into critical size defects created in rat right femurs with and without 10 micrograms of BMP-2. The X-ray and micro-CT results showed that bridging callus was found as soon as 3 weeks and progressed gradually in the BMP group while minimal bone formation was observed in the control group. As expected, stiffness, peak load and energy to break of the BMP group were all higher than the control group. Higher healing rates in the 13-93 group was found compared to the healing rate in PPF/TCP group evaluated in the past indicating a more osteoconductive nature of the 13-93 scaffolds. The scaffolds of both control and BMP groups were partially degraded after 15 weeks as seen in the histological images. For the effects of local BMP-2 delivery to adjacent bones, no statistical difference in the bone area, mineral content and mineral density was found between control and BMP groups. In conclusion, a 13-93 bioactive glass scaffold with local BMP-2 delivery has been demonstrated for its potential application in treating large bone defects.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu, Wai-Ching, Irina S. Robu, Ming C. Leu, Mariano Valez, and Tien-Min Chu. (2013, April 5). Effects of Bioactive Glass Scaffold and BMP-2 in Segmental Defects. Poster session presented at IUPUI Research Day 2013, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}