Nonlinear design, modeling and simulation of magneto rheological suspension: a control system and systems engineering approach

Date
2017-12
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.M.E.
Degree Year
2017
Department
Mechanical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Suspension has been the most important subsystem of the vehicle viewed as a system. The ride comfort and vehicle handling performance are affected by the suspension design. Automotive technology has been continuously incorporating developments over the past few decades to provide the end users with a better comfort of driving. Multi-objective optimization of MR damper with objective function of maximizing damping force generated by MR damper with the geometrical parametric constraint function is achieved in this research using pattern search optimization technique.

Research focuses on design, modeling, and simulation of active suspension using non-linear theory of the Magneto-Rheological (MR) damper with consideration of the hysteresis behavior for a quarter car model. The research is based on the assumption that each wheel experiences same disturbance excitation. Hysteresis is analyzed using Bingham, Dahl’s, and Bouc-Wen models. Research includes simulation of passive, Bingham, Dahl, and Bouc-wen models. Modeled systems are analyzed for the six road profiles, including road type C according to international standards ISO/TC108/SC2N67. Furthermore, the comparative study of the models for the highest comfort with less overshoot and settling time of vehicle sprung mass are executed.  The Bouc-Wen model is 36.91 percent more comfortable than passive suspension in terms of damping force requirements and has a 26.16 percent less overshoot, and 88.31 percent less settling time.  The simulation of the Bouc-Wen model yields a damping force requirement of 2003 N which is 97.63 percent in agreement with analytically calculated damping force generated by MR damper. PID controller implementation has improved the overshoot response of Bouc-Wen model in the range of 17.89 percent-81.96 percent for the different road profiles considered in this research without compromising on the settling time of system. PID controller implementation further improves the passenger comfort and vehicle ride handling capabilities.

The interdisciplinary approach of systems engineering principles for the suspension design provides unique edge to this research. Classical systems engineering tools and MBSE approach are applied in the design of the MR damper. Requirement traceability successfully validates the optimized MR damper.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}