Identification and characterization of molecular modulators of methylmercury-induced toxicity and dopamine neuron degeneration in Caenorhabditis elegans

Date
2014
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2014
Department
Department of Pharmacology & Toxicology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Methylmercury (MeHg) exposure from occupational, environmental and food sources is a significant threat to public health. MeHg poisonings in adults may result in severe psychological and neurological deficits, and in utero exposures can confer significant damage to the developing brain and impair neurobehavioral and intellectual development. Recent epidemiological and vertebrate studies suggest that MeHg exposure may contribute to dopamine (DA) neuron vulnerability and the propensity to develop Parkinson’s disease (PD). I have developed a novel Caenorhabditis elegans (C. elegans) model of MeHg toxicity and have shown that low, chronic exposure confers embryonic defects, developmental delays, reduction in brood size, decreased animal viability and DA neuron degeneration. Toxicant exposure results in an increase in reactive oxygen species (ROS) and the robust induction of several glutathione-S-transferases (GSTs) that are largely dependent on the PD-associated phase II antioxidant transcription factor SKN-1/Nrf2. I have also shown that SKN-1 is expressed in the DA neurons, and a reduction in SKN-1 gene expression increases MeHg-induced animal vulnerability and DA neuron degeneration. Furthermore, I incorporated a novel genome wide reverse genetic screen that identified 92 genes involved in inhibiting MeHg-induced animal death. The putative multidrug resistance protein MRP-7 was identified in the screen. I have shown that this transporter is likely expressed in DA neurons, and reduced gene expression increases cellular Hg accumulation and MeHg-associated DA neurodegeneration. My studies indicate that C. elegans is a useful genetic model to explore the molecular basis of MeHg-associated DA neurodegeneration, and may identify novel therapeutic targets to address this highly relevant health issue.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}