The Eukaryotic SMC5/6 Complex Represses the Replicative Program of High-Risk Human Papillomavirus

Date
2020-10
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2020
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Human papillomaviruses (HPVs) are non-enveloped, circular double-stranded DNA viruses that infect basal keratinocytes of stratified squamous epithelia. High-risk HPV (HR-HPV) infection causes nearly all cervical cancers and an increasing number of head and neck cancers. While prophylactic vaccinations have reduced the incidence of HPV infection and attributable cancers, currently there is no cure for pre-existing HPV infection. As such, HPV remains a global health threat and a better understanding of HPV biology remains of significant medical importance for identification of novel therapeutic targets. The multi-subunit structural maintenance of chromosomes 5/6 complex (SMC5/6) is comprised of SMC5, SMC6 and NSE1-4. SMC5/6 is essential for homologous recombination DNA repair and reportedly functions as an antiviral factor during hepatitis B and herpes simplex-1 viral infections. Intriguingly, SMC5/6 has been found to associate with HR-HPV E2 proteins, which are multifunctional transcription factors essential to regulation of viral replication and transcription. The function of SMC5/6 associations with E2, as well as its role during HR-HPV infection remain unclear and we explored this question in the context of HR-HPV- 31. SMC6 interacted with HPV-31 E2 and co-immunoprecipitation of SMC6/E2 complexes required the E2 transactivation domain, inferring SMC6 association is limited to the full-length E2 isoform. Depletion of SMC6 and NSE3 increased HPV replication and transcription in keratinocytes stably maintaining episomal HPV-31, suggesting that the SMC5/6 complex represses these processes. Neither SMC6 nor NSE3 co-IP the viral E1 DNA helicase alone or E1/E2 complexes but the association of SMC6 with E2 was reduced in the presence of E1, indicating that SMC6 competes with E1 for E2 binding. This infers that SMC6 repression of the viral replicative program may involve inhibiting initiation of viral replication by disrupting E2 interactions with E1. Chromatin immunoprecipitation determined that SMC6 is present on episomal HPV-31 genomes, alluding to a possible role for SMC5/6 in modifying the chromatin state of viral DNA. Taken together, these findings describe a novel function for SMC5/6 as a repressor of the HPV-31 replicative program.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}