Optimization of Survivin Dimerization Inhibitors for the Treatment of Docetaxel-Resistant Prostate Cancer

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-01
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2020
Department
Pharmacology & Toxicology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Despite therapeutic advancements, prostate cancer remains the second most common cause of cancer-related mortality in men. Docetaxel is the first cytotoxic agent to show modest improvements in overall survival rate in patients with metastatic prostate cancer. Unfortunately, over half of these patients do not respond to treatment and ultimately all develop resistance. The mechanism mediating docetaxel resistance remains unknown. Survivin has a classical biological role in cancer, in fact survivin has been shown to be overexpressed in almost every solid tumor and is associated with drug resistance and clinically aggressive disease. In these studies I demonstrate that docetaxel resistant cells have overexpression of survivin compared to sensitive parental cells, knockdown of survivin decreases docetaxel resistance, and stable overexpression of survivin increases resistance to docetaxel. The data in these studies suggest that survivin is likely implicated in docetaxel resistance and treatment with a direct survivin inhibitor may sensitize resistant cells to docetaxel. To this end the evaluation and optimization of two different backbones of survivin inhibitors was performed. One such inhibitor identified is LQZ-7-3 which decreases survivin level via proteasome degradation, leads to apoptosis of cells, and showed efficacy in a prostate cancer xenograft model in vivo when given in an oral formulation. LQZ- 7-3 showed strong specificity to survivin versus other IAP family members at the protein level. Another inhibitor, LQZ-7F-1, demonstrated nanomolar inhibition of cancer cell growth and similar effects on survivin. Both compounds synergized with docetaxel in vitro warranting future in vivo efficacy studies as a combinatorial therapy. Overall, our findings indicate survivin is a significant contributor to docetaxel resistance in metastatic prostate cancer at the molecular level and survivin inhibitors may prove efficacious as a new therapy to sensitize cancer cells to chemotherapies.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}