The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers.

Date
1994-01-04
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Biochemistry and Molecular Biology
Abstract

We show here that the element which was previously characterized as a retinoid X receptor (RXR)-specific response element (RXRE) in the rat cellular retinol-binding protein II (CRBPII) gene is not conserved in the mouse gene. However, two conserved cis-acting elements (RE2 and RE3) located in the promoter region of the mouse and rat CRBPII genes mediate transactivation by retinoic acid receptors (RARs) and RXRs in transfected Cos-1, CV-1, and HeLa cells. The element RE3 which is the major retinoic acid (RA) response element also binds the transcription factors HNF-4 and ARP-1. HNF-4 constitutively activates the mouse CRBPII promoter, whereas ARP-1 represses the activation mediated by RARs, RXRs, and HNF-4. In contrast, RA has no effect on the activity of the mouse CRBPII promoter in the human colon carcinoma cell line CaCo-2 which constitutively expresses RAR alpha, RAR gamma, RXR alpha, HNF-4, and ARP-1, under conditions where the activity of the RAR beta 2 gene promoter is readily induced by RA. Our results suggest that the CRBPII gene may not be RA-inducible in tissues expressing HNF-4 and ARP-1, and that the RA inducibility of the CRBPII gene promoter observed in transfection experiments reflects the promiscuous binding of RARs/RXRs to HNF-4 and ARP-1 response elements.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Nakshatri, H., & Chambon, P. (1994). The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers. Journal of Biological Chemistry, 269(2), 890–902.
ISSN
0021-9258, 1083-351X
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}