An Investigation of Molecular Pathways to Aid in Therapeutic Development for Neurofibromatosis Type 2

Date
2019-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Department of Biochemistry & Molecular Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Neurofibromatosis type 2 (NF2) is an autosomal dominant cancer predisposition in which loss of heterozygosity at the NF2 gene locus leads to the development of tumors of neural crest derived origin, most commonly bilateral vestibular schwannomas. There are currently no FDA approved chemotherapeutic agents for treatment in patients with NF2. Development of therapeutic agents has been hampered by our incomplete knowledge of how Merlin, the protein product of the NF2 gene, functions as a tumor suppressor. In order develop a deeper understanding for how loss of Merlin leads to oncogenic transformation in Schwann cells we have developed a genetically engineered mouse model (GEMM) of Neurofibromatosis Type 2 in which functional expression of Merlin is lost in Schwann cell precursors. In parallel studies utilizing these mice, we have sought to understand the pathophysiology driving tumor formation in Merlin deficient Schwann cells. In Chapter 1, we explore the role of Merlin as a negative regulator of the Group A p21 activated kinases, PAK1 and PAK2. We demonstrate that PAK1, a previously well established oncogene in solid tumors and Merlin binding partner, is hyperactivated in Merlin deficient schwannomas. Through therapeutic interventions and genetic manipulations we demonstrate that inhibition of PAK1 was capable of reducing tumor formation and alleviating sensorineural hearing loss in our NF2 GEMM. In Chapter 2, we investigate the role of NF-kB inducing kinase (NIK) and NF-kB signaling in the formation and growth of Merlin deficient Schwann cell tumors. Prior work in our lab as well as by others demonstrated elevated NF-kB signaling in Merlin deficient Schwann cell tumors. We observed accumulation of a catalytically active fragment of NF-kB inducing kinase and present data that accumulation of a 55Kd constitutively active fragment of NIK is sufficient trigger wild type Schwann cells to form tumors. In vivo however, Schwann cell intrinsic expression of NIK is not required for tumor formation or growth.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2 years (2021-05-24)