Comparison of Supervised Machine Learning and Probabilistic Approaches for Record Linkage

dc.contributor.authorMcNutt, Andrew T.
dc.contributor.authorGrannis, Shaun J.
dc.contributor.authorBo, Na
dc.contributor.authorXu, Huiping
dc.contributor.authorKasthurirathne, Suranga N.
dc.date.accessioned2020-07-20T19:43:22Z
dc.date.available2020-07-20T19:43:22Z
dc.date.issued2020-03-25
dc.description.abstractRecord linkage is vital to prevent fragmentation of patient data. Machine learning approaches present considerable potential for record linkage. We compared the performance of three machine learning algorithms to an established probabilistic record linkage technique. Machine learning approaches exhibited results that were comparable, or statistically superior to the established probabilistic approach. It is unclear if the cost of manually reviewing datasets for supervised learning is justified by the performance improvements they yield.en_US
dc.identifier.citationMcNutt, A.T., Grannis, S.J., Bo, N., Xu, H., Kasthurirathne, S. N.(2020, March). Comparison of Supervised Machine Learning and Probabilistic Approaches for Record Linkage. AMIA Informatics summit 2020 Conference Proceedings.en_US
dc.identifier.urihttps://hdl.handle.net/1805/23283
dc.language.isoen_USen_US
dc.publisherAMIA Informatics summit 2019 Conference Proceedings.en_US
dc.subjectrecord linkageen_US
dc.subjectpatient matchingen_US
dc.subjectNeural networken_US
dc.subjectDecision treesen_US
dc.titleComparison of Supervised Machine Learning and Probabilistic Approaches for Record Linkageen_US
dc.typePresentationen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AMIA.IS.2020.docx
Size:
201.9 KB
Format:
Microsoft Word XML
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: