Matrix Metalloproteinases Expression during Limb Regeneration

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2010-04-09
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Axolotl (regeneration-competent) is one of the unique vertebrates which can regenerate missing organs such as limbs, jaws, spinal cord, and tail anytime during their life cycle. There also exists a recessive mutant of axolotl which has a phenotype called short toes (s/s, regenerationdeficient). The s/s mutant can regenerate its tail and spinal cord but cannot maintain the growth of the limb blastema, which results in the failure of limb regeneration. Remodeling of extracellular matrix (ECM) during early blastema formation, also known as histolysis, leads to the release of stem cells and activation of various growth factors. Therefore, histolysis is considered to be a crucial step in regenerating the exact replica of missing limbs in axolotls. Matrix metalloproteinases (MMPs) are zinc dependent endopeptidase that have been suggested to play roles in histolysis. However, it still remains unclear if histolysis is different in limb regeneration between regeneration competent and deficient animals. In this study, we analyzed the expression patterns of MMPs and the tissue inhibitors of the MMPs (TIMPs) in axolotl and s/s utilizing MMP arrays (RayBiotech, Inc., Norcross, GA), zymography and western blots. The cut-off limbs of the axolotls and s/s were used as controls. The animals were allowed to regenerate and the blastema was collected at three stages: epidermis closure (EC), dedifferentiation (DD), and early bud (EB). The total proteins were extracted from all the samples. 20 μg of protein was used to perform MMP arrays according to manufacturer’s protocol. They detected MMP-1, -2, -3, -8, -9, -10, and -13, as well as TIMP-1, -2 and -4 in the controls, EC, DD and EB samples from axolotl and s/s. Gelatin zymograghy with 20 μg of protein confirmed that MMP-2 and -9 were expressed at all the same time points in the axolotl and s/s samples. The expression patterns of MMP-9 were similar in the axolotl and s/s until the DD stage. While later in the EB stage, the axolotl showed a decrease in MMP-9 expression and s/s showed increased expression. Western blots were performed with 40 μg of protein using MMP-2 and -9 antibodies, and confirmed the zymography results. These results suggested that the expression patterns of the MMPs, especially MMP-9, are different in regeneration competent and deficient animals. One of the keys for a healthy blastema formation, which can multiply and later repattern into the missing limb, might be the release of the critical amount of MMP at the right time. This study was supported by an IUSD start-up grant to F. Song and a grant from W. M. Keck Foundation to D. L. Stocum.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
N. SANTOSH, B.S. MAHMOUDI, L. J. WINDSOR, D.L. STOCUM, F. SONG. (2010, April 9). Matrix Metalloproteinases Expression during Limb Regeneration. Poster session presented at IUPUI Research Day 2010, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}