Selection for High Alcohol Preference Drinking in Mice Results in Heightened Sensitivity and Rapid Development of Acute Functional Tolerance to Alcohol’s Ataxic Effects
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Selection for High Alcohol Preference Drinking in Mice Results in Heightened Sensitivity and Rapid Development of Acute Functional Tolerance to Alcohol’s Ataxic Effects Brandon M. Fritz , Nicholas J. Grahame , and Stephen L. Boehm II Indiana Alcohol Research Center and Department of Psychology, Indiana University – Purdue University Indianapolis, Indianapolis, IN 46202 Abstract Propensity to develop acute functional (or within session) tolerance to alcohol (ethanol) may influence the amount of alcohol consumed, with higher drinking associated with greater acute functional tolerance (AFT). The goal of the current study was to assess this potential correlated response between alcohol preference and AFT in second and third replicate lines of mice selectively bred for high (HAP2&3) and low (LAP2&3) alcohol preference drinking. Male and female mice were tested for development of AFT on a static dowel task which requires that animals maintain balance on a wooden dowel in order to prevent falling. On test day, each mouse received one (1.75g/kg; Experiment 1) or two (1.75g/kg and 2.0g/kg; Experiment 2) injections of ethanol; an initial administration before being placed on the dowel and in Experiment 2, an additional administration after the first regain of balance on the dowel. Blood samples were taken immediately after loss of balance (when BECs were rising) and at recovery (during falling BECs) in Experiment 1, and after first and second recovery in Experiment 2. It was found that HAP mice fell from the dowel significantly earlier and at lower BECs than LAP mice following the initial injection of ethanol and were therefore more sensitive to its early effects. Furthermore, Experiment 1 detected significantly greater AFT development (BECfalling - BECrising) in HAP mice as compared to LAP mice which occurred within ~30 min, supporting our hypothesis. However, AFT was not different between lines in Experiment 2, indicating that ~30–60 min following alcohol administration, AFT development was similar in both lines. These data show that high alcohol drinking genetically associates with both high initial sensitivity and very early tolerance to the ataxic effects of ethanol.