Advocacy in Mental Health Social Interactions on Public Social Media

If you need an accessible version of this item, please submit a remediation request.
Date
2022-02
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2022
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Health advocacy is a social phenomenon in which individuals and collectives attempt to raise awareness and change opinions and policies about health-related causes. Mental health advocacy is health advocacy to advance treatment, rights, and recognition of people living with a mental health condition. The Internet is reshaping how mental health advocacy is performed on a global scale, by facilitating and broadening the reach of advocacy activities, but also giving more room for opposing mental health advocacy. Another factor contributing to mental health advocacy lies in the cultural underpinnings of mental health in different societies; East Asian countries like South Korea have higher stigma attached to mental health compared to Western countries like the US. This study examines interactions about schizophrenia, a specific mental health diagnosis, on public social media (Facebook, Instagram, and Twitter) in two different languages, English and Korean, to determine how mental health advocacy and its opposition are expressed on social media. After delineation of a set of keywords for retrieval of content about schizophrenia, three months’ worth of social media posts were collected; a subset of these posts was then analyzed qualitatively using constant comparing with a proposed model describing online mental heath advocacy based on existing literature. Various expressions of light mental health advocacy, such as sharing facts about schizophrenia, and strong advocacy, showcasing offline engagement, were found in English posts; many of these expressions were however absent from the analyzed Korean posts that heavily featured jokes, insults, and criticisms. These findings were used to train machine learning classifiers to detect advocacy and counter-advocacy. The classifiers confirmed the predominance of counter-advocacy in Korean posts compared to important advocacy prevalence in English posts. These findings informed culturally sensitive recommendations for social media uses by mental health advocates and implications for international social media studies in human-computer interaction.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}