Feature selection through visualisation for the classification of online reviews

Date
2017-04-17
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
M.S.
Degree Year
2017
Department
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The purpose of this work is to prove that the visualization is at least as powerful as the best automatic feature selection algorithms. This is achieved by applying our visualization technique to the online review classification into fake and genuine reviews. Our technique uses radial chart and color overlaps to explore the best feature selection through visualization for classification. Every review is treated as a radial translucent red or blue membrane with its dimensions determining the shape of the membrane. This work also shows how the dimension ordering and combination is relevant in the feature selection process. In brief, the whole idea is about giving a structure to each text review based on certain attributes, comparing how different or how similar the structure of the different or same categories are and highlighting the key features that contribute to the classification the most. Colors and saturations aid in the feature selection process. Our visualization technique helps the user get insights into the high dimensional data by providing means to eliminate the worst features right away, pick some best features without statistical aids, understand the behavior of the dimensions in different combinations.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}