Deep Multimodal Physiological Learning of Cerebral Vasoregulation Dynamics on Stroke Patients Towards Precision Brain Medicine

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.E.C.E.
Degree Year
2024
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Impaired cerebral vasoregulation is one of the most common post-ischemic stroke effects. Diagnosis and prevention of this condition is often invasive, costly and in-effective. This impairment restricts the cerebral blood vessels to properly regulate blood flow, which is very important for normal brain functioning. Developing accurate, non-invasive and efficient methods to detect this condition aids in better stroke diagnosis and prevention. The aim of this thesis is to develop deep learning techniques for the purpose of detection of cerebral vasoregulation impairments by analyzing physiological signals. This research employs various Deep learning techniques like Convolution Neural Networks (CNN), Mo bileNet, and Long-Short-Term Memory (LSTM) to determine variety of physiological signals from the PhysioNet database like Electrocardio-gram (ECG), Transcranial Doppler (TCD), Electromyogram (EMG), and Blood Pressure(BP) as stroke or non-stroke subjects. The effectiveness of these algorithms is demonstrated by a classification accuracy of 90% for the combination of ECG and EMG signals. Furthermore, this research explores the importance of analyzing dynamic physiologi cal activities in determining the impairment. The dynamic activities include Sit-stand, Sit-stand-balance, Head-up-tilt, and Walk dataset from the PhysioNet website. CNN and MobileNetV3 are employed in classification purposes of these signals, attempting to iden tify cerebral health. The accuracy of the model and robustness of these methods is greatly enhanced when multiple signals are integrated. Overall, this study highlights the potential of deep multimodal physiological learning in the development of precision brain medicine further enhancing stroke diagnosis. The results pave the way for the development of advanced diagnostic tools to determine cerebral health.

Description
IUPUI
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}