Traversing Hot-Jet Ignition in a Constant-Volume Combustor

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014-04
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Hot-jet ignition of a combustible mixture has application in internal combustion engines, detonation initiation, and wave rotor combustion. Numerical predictions are made for ignition of combustible mixtures using a traversing jet of chemically active gas at one end of a long constant-volume combustor (CVC) with an aspect ratio similar to a wave rotor channel. The CVC initially contains a stoichiometric mixture of ethylene or methane at atmospheric conditions. The traversing jet issues from a rotating prechamber that generates gaseous combustion products, assumed at chemical equilibrium for estimating major species. Turbulent combustion uses a hybrid eddy-breakup model with detailed finite-rate kinetics and a two-equation k-ω model. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure, and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Pressure waves in the CVC chamber affect ignition through flame vorticity generation and compression. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Karimi, A., Rajagopal, M., & Nalim, R. (2014). Traversing Hot-Jet Ignition in a Constant-Volume Combustor. Journal of Engineering for Gas Turbines and Power, 136(4), 041506.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}