Biophysics of Zebrafish (Danio rerio) Sperm

dc.contributor.authorHagedorn, M.
dc.contributor.authorRicker, J.
dc.contributor.authorMcCarthy, M.
dc.contributor.authorMeyers, S.A.
dc.contributor.authorTiersch, T.R.
dc.contributor.authorVarga, Z. M.
dc.contributor.authorKleinhans, F.W.
dc.contributor.departmentPhysics, School of Scienceen_US
dc.date.accessioned2018-03-06T17:17:06Z
dc.date.available2018-03-06T17:17:06Z
dc.date.issued2009-02
dc.description.abstractIn the past two decades, laboratories around the world have produced thousands of mutant, transgenic, and wild-type zebrafish lines for biomedical research. Although slow-freezing cryopreservation of zebrafish sperm has been available for 30 years, current protocols lack standardization and yield inconsistent post-thaw fertilization rates. Cell cryopreservation cannot be improved without basic physiological knowledge, which was lacking for zebrafish sperm. The first goal was to define basic cryobiological values for wild-type zebrafish sperm and to evaluate how modern physiological methods could aid in developing improved cryopreservation protocols. Coulter counting methods measured an osmotically inactive water fraction (Vb) of 0.37 ± 0.02 (SEM), an isosmotic cell volume (Vo) of 12.1 ± 0.2 μm3 (SEM), a water permeability (Lp) in 10% dimethyl sulfoxide of 0.021 ± 0.001(SEM) um/min/atm, and a cryoprotectant permeability (Ps) of 0.10 +/− 0.01 (SEM) × 10−3 cm/min. Fourier transform infrared spectroscopy indicated that sperm membranes frozen without cryoprotectant showed damage and lipid reorganization, while those exposed to 10% glycerol demonstrated decreased lipid phase transition temperatures, which would stabilize the cells during cooling. The second goal was to determine the practicality and viability of shipping cooled zebrafish sperm overnight through the mail. Flow cytometry demonstrated that chilled fresh sperm can be maintained at 92% viability for 24 h at 0°C, suggesting that it can be shipped and exchanged between laboratories. Additional methods will be necessary to analyze and improve cryopreservation techniques and post-thaw fertility of zebrafish sperm. The present study is a first step to explore such techniques.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationHagedorn, M., Ricker, J., McCarthy, M., Meyers, S. A., Tiersch, T. R., Varga, Z. M., & Kleinhans, F. W. (2009). Biophysics of Zebrafish (Danio rerio) Sperm. Cryobiology, 58(1), 12–19. https://doi.org/10.1016/j.cryobiol.2008.09.013en_US
dc.identifier.issn0011-2240en_US
dc.identifier.urihttps://hdl.handle.net/1805/15373
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.cryobiol.2008.09.013en_US
dc.relation.journalCryobiologyen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectCoulteren_US
dc.subjectFourier Transform Infrared Spectroscopyen_US
dc.subjectpermeabilityen_US
dc.subjectcell membraneen_US
dc.subjectlipiden_US
dc.subjectcryopreservationen_US
dc.subjectfreeze damageen_US
dc.subjectosmotic pressureen_US
dc.subjectzebrafishen_US
dc.subjectDanio rerioen_US
dc.titleBiophysics of Zebrafish (Danio rerio) Spermen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
6.pdf
Size:
544.35 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: