Bayesian Adaptive Designs for Early Phase Clinical Trials

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2023-07
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2023
Department
Biostatistics
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Delayed toxicity outcomes are common in phase I clinical trials, especially in oncology studies. It causes logistic difficulty, wastes resources, and prolongs the trial duration. We propose the time-to-event 3+3 (T-3+3) design to solve the delayed outcome issue for the 3+3 design. We convert the dose decision rules of the 3+3 design into a series of events. A transparent yet efficient Bayesian probability model is applied to calculate the event happening probabilities in the presence of delayed outcomes, which incorporates the informative pending patients' remaining follow-up time into consideration. The T-3+3 design only models the information for the pending patients and seamlessly reduces to the conventional 3+3 design in the absence of delayed outcomes. We further extend the proposed method to interval 3+3 (i3+3) design, an algorithm-based phase I dose-finding design which is based on simple but more comprehensive rules that account for the variabilities in the observed data. Similarly, the dose escalation/deescalation decision is recommended by comparing the event happening probabilities which are calculated by considering the ratio between the averaged follow-up time for at-risk patients and the total assessment window. We evaluate the operating characteristics of the proposed designs through simulation studies and compare them to existing methods. The umbrella trial is a clinical trial strategy that accommodates the paradigm shift towards personalized medicine, which evaluates multiple investigational drugs in different subgroups of patients with the same disease. A Bayesian adaptive umbrella trial design is proposed to select effective targeted agents for different biomarker-based subgroups of patients. To facilitate treatment evaluation, the design uses a mixture regression model that jointly models short-term and long-term response outcomes. In addition, a data-driven latent class model is employed to adaptively combine subgroups into induced latent classes based on overall data heterogeneities, which improves the statistical power of the umbrella trial. To enhance individual ethics, the design includes a response-adaptive randomization scheme with early stopping rules for futility and superiority. Bayesian posterior probabilities are used to make these decisions. Simulation studies demonstrate that the proposed design outperforms two conventional designs across a range of practical treatment-outcome scenarios.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}