Raloxifene Enhances Material-Level Mechanical Properties of Femoral Cortical and Trabecular Bone

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2007-08
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

We have previously documented that raloxifene enhances the mechanical properties of dog vertebrae independent of changes in bone mass, suggesting a positive effect of raloxifene on material-level mechanical properties. The goal of this study was to determine the separate effects of raloxifene on the material-level mechanical properties of trabecular and cortical bone from the femur of beagle dogs. Skeletally mature female beagles (n = 12 per group) were treated daily for 1 yr with oral doses of vehicle or raloxifene (0.50 mg/kg d). Trabecular bone mechanical properties were measured at the femoral neck using reduced platen compression, a method that allows the trabecular bone to be tested without coring specimens. Cortical bone properties were assessed on prismatic beam specimens machined from the femoral diaphysis using both monotonic and dynamic (cyclic relaxation) four-point bending tests. Trabecular bone from raloxifene-treated animals had significantly higher ultimate stress (+130%), modulus (+89%), and toughness (+152%) compared with vehicle-treated animals. Cortical bone from raloxifene-treated animals had significantly greater toughness (+62%) compared with vehicle, primarily as a function of increased postyield displacement (+100%). There was no significant difference between groups in the percentage of stiffness loss during cortical bone cyclic relaxation tests. These results are consistent with previous data from the vertebrae of these same animals, showing raloxifene has positive effects on biomechanical properties independent of changes in bone volume/density. This may help explain how raloxifene reduces osteoporotic fractures despite modest changes in bone mass.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Endocrinology. 2007 Aug;148(8):3908-13. Epub 2007 May 3. Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Allen MR1, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB.
ISSN
Publisher
Series/Report
Sponsorship
This work was supported by National Institutes of Health Grants AR047838 and AR007581 and a research grant from Lilly Research Laboratories. This investigation used an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR10601-01 from the National Center for Research Resources, National Institutes of Health. Disclosure Summary: M.R.A. has research contracts from Eli Lilly and the Alliance for Better Bone Health. D.B.B. has research contracts from Eli Lilly, the Alliance for Better Bone Health, and Amgen; owns stock in Amgen, Eli Lilly, Pfizer, and Glaxo SmithKline; and is a speaker/consultant for Merck, Eli Lilly, the Alliance for Better Bone Health, and Amgen. A.S.K. and M.C.K. have a family member employed by Eli Lilly. H.A.H. and W.A.H. have nothing to declare.
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}