Bridging Text Mining and Bayesian Networks

If you need an accessible version of this item, please submit a remediation request.
Date
2011-03-09
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2010
Department
Computer & Information Science
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

After the initial network is constructed using expert’s knowledge of the domain, Bayesian networks need to be updated as and when new data is observed. Literature mining is a very important source of this new data. In this work, we explore what kind of data needs to be extracted with the view to update Bayesian Networks, existing technologies which can be useful in achieving some of the goals and what research is required to accomplish the remaining requirements. This thesis specifically deals with utilizing causal associations and experimental results which can be obtained from literature mining. However, these associations and numerical results cannot be directly integrated with the Bayesian network. The source of the literature and the perceived quality of research needs to be factored into the process of integration, just like a human, reading the literature, would. This thesis presents a general methodology for updating a Bayesian Network with the mined data. This methodology consists of solutions to some of the issues surrounding the task of integrating the causal associations with the Bayesian Network and demonstrates the idea with a semiautomated software system.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}