Ricci Curvature of Finsler Metrics by Warped Product

dc.contributor.advisorShen, Zhongmin
dc.contributor.authorMarcal, Patricia
dc.contributor.otherBuse, Olguta
dc.contributor.otherRamras, Daniel
dc.contributor.otherRoeder, Roland
dc.date.accessioned2020-05-01T18:15:29Z
dc.date.available2020-05-01T18:15:29Z
dc.date.issued2020-05
dc.degree.date2020en_US
dc.degree.disciplineMathematical Sciencesen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractIn the present work, we consider a class of Finsler metrics using the warped product notion introduced by B. Chen, Z. Shen and L. Zhao (2018), with another “warping”, one that is consistent with the form of metrics modeling static spacetimes and simplified by spherical symmetry over spatial coordinates, which emerged from the Schwarzschild metric in isotropic coordinates. We will give the PDE characterization for the proposed metrics to be Ricci-flat and construct explicit examples. Whenever possible, we describe both positive-definite solutions and solutions with Lorentz signature. For the latter, the 4-dimensional metrics may also be studied as Finsler spacetimes.en_US
dc.identifier.urihttps://hdl.handle.net/1805/22680
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2410
dc.language.isoen_USen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0*
dc.subjectWarped Producten_US
dc.subjectFinsler Metricsen_US
dc.subjectRicci Curvatureen_US
dc.subjectRicci flaten_US
dc.titleRicci Curvature of Finsler Metrics by Warped Producten_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ricci_Curvature_of_Finsler_Metrics_by_Warped_Product.pdf
Size:
529.58 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: