A petri net based model for AEB systems considering vehicle and pedestrian/cyclist in a certain area

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2017
Language
English
Embargo Lift Date
Department
Degree
M.S.E.C.E.
Degree Year
2017
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

For AEB performance testing, surrogates and testing systems have been developed by the Transportation Active Safety Institute (TASI). A set of tests, both for performance of vehicle equipped with AEB systems and for harmonization of surrogates, have been conducted under different scenarios with different variables which include cyclist speed, vehicle speed, cyclist moving directions, and so on.

There are several braking patterns described in this thesis, which provide the possibility to control the distance of an emergency braking. With different braking distance and steering angle during the emergency braking, choosing the final place of a vehicle becomes possible.

This thesis considers vehicle and pedestrian/cyclist together to avoid a crash in a certain area rather than predicting the collision point. Petri net models were built for both vehicle and pedestrian/cyclist in potential collision area and crossing road scenarios. Then, controllers were designed for Petri net models and all possible states were calculated.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}