Quantum Toroidal Superalgebras

dc.contributor.advisorMukhin, Evgeny
dc.contributor.authorPereira Bezerra, Luan
dc.contributor.otherRamras, Daniel
dc.contributor.otherRoeder, Roland
dc.contributor.otherTarasov, Vitaly
dc.date.accessioned2020-05-01T18:18:07Z
dc.date.available2020-05-01T18:18:07Z
dc.date.issued2020-05
dc.degree.date2020en_US
dc.degree.disciplineMathematical Sciencesen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractWe introduce the quantum toroidal superalgebra E(m|n) associated with the Lie superalgebra gl(m|n) and initiate its study. For each choice of parity "s" of gl(m|n), a corresponding quantum toroidal superalgebra E(s) is defined. To show that all such superalgebras are isomorphic, an action of the toroidal braid group is constructed. The superalgebra E(s) contains two distinguished subalgebras, both isomorphic to the quantum affine superalgebra Uq sl̂(m|n) with parity "s", called vertical and horizontal subalgebras. We show the existence of Miki automorphism of E(s), which exchanges the vertical and horizontal subalgebras. If m and n are different and "s" is standard, we give a construction of level 1 E(m|n)-modules through vertex operators. We also construct an evaluation map from E(m|n)(q1,q2,q3) to the quantum affine algebra Uq gl̂(m|n) at level c=q3^(m-n)/2.en_US
dc.identifier.urihttps://hdl.handle.net/1805/22682
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2411
dc.language.isoen_USen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectQuantum toroidalen_US
dc.subjectSuperalgebrasen_US
dc.subjectBraid group actionen_US
dc.titleQuantum Toroidal Superalgebrasen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BezerraLuan_Thesis.pdf
Size:
461.16 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: