Quantum Toroidal Superalgebras
dc.contributor.advisor | Mukhin, Evgeny | |
dc.contributor.author | Pereira Bezerra, Luan | |
dc.contributor.other | Ramras, Daniel | |
dc.contributor.other | Roeder, Roland | |
dc.contributor.other | Tarasov, Vitaly | |
dc.date.accessioned | 2020-05-01T18:18:07Z | |
dc.date.available | 2020-05-01T18:18:07Z | |
dc.date.issued | 2020-05 | |
dc.degree.date | 2020 | en_US |
dc.degree.discipline | Mathematical Sciences | en |
dc.degree.grantor | Purdue University | en_US |
dc.degree.level | Ph.D. | en_US |
dc.description | Indiana University-Purdue University Indianapolis (IUPUI) | en_US |
dc.description.abstract | We introduce the quantum toroidal superalgebra E(m|n) associated with the Lie superalgebra gl(m|n) and initiate its study. For each choice of parity "s" of gl(m|n), a corresponding quantum toroidal superalgebra E(s) is defined. To show that all such superalgebras are isomorphic, an action of the toroidal braid group is constructed. The superalgebra E(s) contains two distinguished subalgebras, both isomorphic to the quantum affine superalgebra Uq sl̂(m|n) with parity "s", called vertical and horizontal subalgebras. We show the existence of Miki automorphism of E(s), which exchanges the vertical and horizontal subalgebras. If m and n are different and "s" is standard, we give a construction of level 1 E(m|n)-modules through vertex operators. We also construct an evaluation map from E(m|n)(q1,q2,q3) to the quantum affine algebra Uq gl̂(m|n) at level c=q3^(m-n)/2. | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/22682 | |
dc.identifier.uri | http://dx.doi.org/10.7912/C2/2411 | |
dc.language.iso | en_US | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Quantum toroidal | en_US |
dc.subject | Superalgebras | en_US |
dc.subject | Braid group action | en_US |
dc.title | Quantum Toroidal Superalgebras | en_US |
dc.type | Thesis | en |