Mechanisms of HIV-Nef Induced Endothelial Cell Stress: Implications of HIV-Nef Protein Persistence in Aviremic HIV Patients

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

HIV-associated cardio-pulmonary vascular pathologies such as coronary artery disease, pulmonary hypertension and emphysema remain a major issue in the HIVinfected population even in the era of antiretroviral therapy (ART). The continued production of HIV encoded pro-apoptotic protein, such as Nef in latently HIV-infected cells is a possible mechanism for vascular dysfunction underlying these diseases. HIVNef persists in two compartments in these patients: (i) extracellular vesicles (EV) of plasma and bronchoalveolar lavage (BAL) fluid and (ii) PBMC and BAL derived cells. Here I demonstrate that the presence of HIV-Nef protein in cells and EV is capable of stressing endothelial cells by inducing ROS production leading to endothelial cell apoptosis. HIV-Nef protein hijacks host cell signaling by interacting with small GTP binding protein Rac1 which activates PAK2 to promote the release of pro-apoptotic cargo containing EV and surface expression of pro-apoptotic protein Endothelial Monocyte Activating Polypeptide II (EMAPII). Using this mechanism, Nef protein robustly induces apoptosis in Human Coronary Artery Endothelial Cells and Human Lung microvascular endothelial cells. Endothelial specific expression of HIV-Nef protein in transgenic mice was sufficient to induce vascular pathologies as evidenced by impaired endothelium mediated vasodilation of the aorta and vascular remodeling and emphysema like alveolar rarefaction in the lung. Furthermore, EV isolated from HIV patients on ART was capable of inducing endothelial apoptosis in a Nef dependent fashion. Of therapeutic interest, EMAPII neutralizing antibodies to block EMAPII mediated apoptosis and statin treatment to ameliorate Nef induced Rac1 signaling was capable of blocking Nef induced endothelial stress in both in vivo and in vitro. In conclusion, HIV-Nef protein uses a Rac1-Pak2 signaling axis to promote its dissemination in EV, which in turn induces endothelial cell stress after its uptake.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}