Connection Problem for Painlevé Tau Functions
dc.contributor.advisor | Its, Alexander | |
dc.contributor.author | Prokhorov, Andrei | |
dc.contributor.other | Bleher, Pavel | |
dc.contributor.other | Eremenko, Alexandre | |
dc.contributor.other | Tarasov, Vitaly | |
dc.date.accessioned | 2019-07-18T15:09:53Z | |
dc.date.available | 2019-07-18T15:09:53Z | |
dc.date.issued | 2019-08 | |
dc.degree.date | 2019 | en_US |
dc.degree.discipline | Mathematical Sciences | en |
dc.degree.grantor | Purdue University | en_US |
dc.degree.level | Ph.D. | en_US |
dc.description | Indiana University-Purdue University Indianapolis (IUPUI) | en_US |
dc.description.abstract | We derive the differential identities for isomonodromic tau functions, describing their monodromy dependence. For Painlev´e equations we obtain them from the relation of tau function to classical action which is a consequence of quasihomogeneity of corresponding Hamiltonians. We use these identities to solve the connection problem for generic solution of Painlev´e-III(D8) equation, and homogeneous Painlev´e-II equation. We formulate conjectures on Hamiltonian and symplectic structure of general isomonodromic deformations we obtained during our studies and check them for Painlev´e equations. | en_US |
dc.identifier.doi | 10.7912/rygf-2h27 | |
dc.identifier.uri | https://hdl.handle.net/1805/19905 | |
dc.identifier.uri | http://dx.doi.org/10.7912/rygf-2h27 | |
dc.identifier.uri | http://dx.doi.org/10.7912/C2/2405 | |
dc.language.iso | en_US | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | isomonodromic tau function | en_US |
dc.subject | connection problem | en_US |
dc.subject | Hamiltonian systems | en_US |
dc.subject | classical action | en_US |
dc.subject | Riemann-Hilbert correspondence | en_US |
dc.subject | isomonodromic deformations | en_US |
dc.subject | quasihomogeneous functions | en_US |
dc.subject | Painlevé equations | en_US |
dc.title | Connection Problem for Painlevé Tau Functions | en_US |
dc.type | Thesis | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Prokhorov_dissertation.pdf
- Size:
- 744.61 KB
- Format:
- Adobe Portable Document Format
- Description:
- PDF of Dissertation
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.99 KB
- Format:
- Item-specific license agreed upon to submission
- Description: