Connection Problem for Painlevé Tau Functions

dc.contributor.advisorIts, Alexander
dc.contributor.authorProkhorov, Andrei
dc.contributor.otherBleher, Pavel
dc.contributor.otherEremenko, Alexandre
dc.contributor.otherTarasov, Vitaly
dc.date.accessioned2019-07-18T15:09:53Z
dc.date.available2019-07-18T15:09:53Z
dc.date.issued2019-08
dc.degree.date2019en_US
dc.degree.disciplineMathematical Sciencesen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractWe derive the differential identities for isomonodromic tau functions, describing their monodromy dependence. For Painlev´e equations we obtain them from the relation of tau function to classical action which is a consequence of quasihomogeneity of corresponding Hamiltonians. We use these identities to solve the connection problem for generic solution of Painlev´e-III(D8) equation, and homogeneous Painlev´e-II equation. We formulate conjectures on Hamiltonian and symplectic structure of general isomonodromic deformations we obtained during our studies and check them for Painlev´e equations.en_US
dc.identifier.doi10.7912/rygf-2h27
dc.identifier.urihttps://hdl.handle.net/1805/19905
dc.identifier.urihttp://dx.doi.org/10.7912/rygf-2h27
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2405
dc.language.isoen_USen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectisomonodromic tau functionen_US
dc.subjectconnection problemen_US
dc.subjectHamiltonian systemsen_US
dc.subjectclassical actionen_US
dc.subjectRiemann-Hilbert correspondenceen_US
dc.subjectisomonodromic deformationsen_US
dc.subjectquasihomogeneous functionsen_US
dc.subjectPainlevé equationsen_US
dc.titleConnection Problem for Painlevé Tau Functionsen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Prokhorov_dissertation.pdf
Size:
744.61 KB
Format:
Adobe Portable Document Format
Description:
PDF of Dissertation
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: