The effect of polymerization methods and fiber types on the mechanical behavior of fiber-reinforced composite resin

dc.contributor.advisorChu, Tien-Min Gabriel
dc.contributor.authorHuang, Nan-Chieh
dc.contributor.otherHara, Anderson T.
dc.contributor.otherBrown, David T.
dc.contributor.otherBottino, Marco C.
dc.contributor.otherLevon, John A.
dc.date.accessioned2015-06-24T00:17:56Z
dc.date.available2015-06-24T00:17:56Z
dc.date.issued2015
dc.degree.date2015en_US
dc.degree.disciplineSchool of Dentistryen
dc.degree.grantorIndiana Universityen_US
dc.degree.levelM.S.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractBackground: Interim restoration for a lost anterior tooth is often needed for temporary esthetic and functional purposes. Materials for interim restorations usually have less strength than ceramic or gold and can suffer from fracture. Several approaches have been proposed to reinforce interim restorations, among which fiber reinforcement has been regarded as one of the most effective methods. However, some studies have found that the limitation of this method is the poor polymerization between the fibers and the composite resin, which can cause debonding and failure. 64 Purpose: The purpose of this study was to investigate the effects of different polymerization methods as well as fiber types on the mechanical behavior of fiberreinforced composite resin. Material and Methods: A 0.2-mm thick fiber layer from strip fibers or mesh fibers embedded in uncured monomers w as fabricated with polymerization (two-step method) or without polymerization (one-step method), on top of which a 1.8-mm composite layer was added to make a bar-shape sample, followed by a final polymerization. Seventy-five specimens were fabricated and divided into one control group and four experimental groups (n=15), according to the type of glass fiber (strip or mesh) and polymerization methods (one-step or two-step). Specimens were tested for flexural strength, flexural modulus, and microhardness. The failure modes of specimens were observed by scanning electron microscopy (SEM). Results: The fiber types showed significant effect on the flexural strength of test specimens (F = 469.48; p < 0.05), but the polymerization methods had no significant effect (F = 0.05; p = 0.82). The interaction between these two variables was not significant (F = 1.73; p = 0.19). In addition, both fiber types and polymerization steps affected the flexural modulus of test specimens (F = 9.71; p < 0.05 for fiber type, and F = 12.17; p < 0.05 for polymerization method). However, the interaction between these two variables was not significant (F = 0.40; p = 0.53). Both fiber types and polymerization steps affected the Knoop hardness number of test specimens (F = 5.73; p < 0.05 for polymerization method. and F = 349.99; p < 0.05 for fiber type) and the interaction between these two variables was also significant (F = 5.73; p < 0.05). SEM images revealed the failure mode tended to become repairable while fiber reinforcement was 65 existed. However, different polymerization methods did not change the failure mode. Conclusion: The strip fibers showed better mechanical behavior than mesh fibers and were suggested for use in composite resin reinforcement. However, different polymerization methods did not have significant effect on the strength and the failure mode of fiber-reinforced composite
dc.identifier.urihttps://hdl.handle.net/1805/6497
dc.identifier.urihttp://dx.doi.org/10.7912/C2/1581
dc.language.isoen_USen_US
dc.subjectFiberen_US
dc.subjectCompositeen_US
dc.subjectPolymerizationen_US
dc.subjectHardnessen_US
dc.subjectFlexural Strengthen_US
dc.subjectFlexural Modulusen_US
dc.subjectAnalysis of Varianceen_US
dc.subject.meshPolymerization -- methodsen_US
dc.subject.meshDental Restoration, Temporaryen_US
dc.subject.meshComposite Resins -- chemistryen_US
dc.subject.meshGlass -- chemistryen_US
dc.subject.meshPolymethyl Methacrylate -- chemistryen_US
dc.subject.meshHardnessen_US
dc.subject.meshStress, Mechanicalen_US
dc.subject.meshSurface Propertiesen_US
dc.titleThe effect of polymerization methods and fiber types on the mechanical behavior of fiber-reinforced composite resinen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
THE EFFECT OF POLYMERIZATION METHODS AND FIBER TYPES ON THE MECHANICAL BEHAVIOR OF FIBER-REINFORCED COMPOSITE RESIN.pdf
Size:
5.69 MB
Format:
Adobe Portable Document Format
Description:
THE EFFECT OF POLYMERIZATION METHODS AND FIBER TYPES ON THE MECHANICAL BEHAVIOR OF FIBER-REINFORCED COMPOSITE RESIN
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: