The Role of TGF-B Activated Kinase (TAK1) in Retinal Development and Inflammation
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Transforming growth factor β-activated kinase 1 (TAK1), a hub kinase at the convergence of multiple signaling pathways, is critical to the development of the central nervous system and has been found to play a role in cell death and apoptosis. TAK1 may have the potential to elucidate mechanisms of cell cycle and neurodegeneration. The Belecky-Adams laboratory has aimed to study TAK1 and its potential roles in cell cycle by studying its role in chick retinal development as well as its possible implication in the progression of diabetic retinopathy (DR). Chapter 3 includes studies that explore TAK1 in a study in chick retinal development and TAK1 in in vitro studies in retinal microglia. Using the embryonic chick, immunohistochemistry for the activated form of TAK1 (pTAK1) showed localization of pTAK1 in differentiated and progenitor cells of the retina. Using an inhibitor or TAK1 activite, (5Z)-7-Oxozeaenol, in chick eye development showed an increase in progenitor cells and a decrease in differentiated cells. This study in chick suggests TAK1 may be a critical player in the regulation of the cell cycle during retinal development. Results from experimentation in chick led to studying the potential role of TAK1 in inflammation and neurodegeneration. TAK1 has previously been implicated in cell death and apoptosis suggesting that TAK1 may be a critical player in inflammatory pathways. TAK1 has been implicated in the regulation of inflammatory factors in different parts of the CNS but has not yet been studied specifically in retina or in specific retinal cells. Chapter 2 includes studies from the Belecky-Adams laboratory of in vitro work with retinal microglia. Retinal microglia were treated with activators and the translocation to the nucleus of a downstream factor of TAK1 was determined: NF-kB. Treatment of retinal microglia in the presence of activators with TAKinib, an inhibitor of TAK1 activation, revealed that TAK1 inhibition reduces the activation of downstream NF-kB. Together this data suggests that TAK1 may be implicated in various systems of the body and further studies on its mechanisms may help elucidate potential therapeutic roles of the kinase.