A Dynamical Approach to the Potts Model on Cayley Tree

Date
2024-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2024
Department
Mathematical Sciences
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The Ising model is one of the most important theoretical models in statistical physics, which was originally developed to describe ferromagnetism. A system of magnetic particles, for example, can be modeled as a linear chain in one dimension or a lattice in two dimensions, with one particle at each lattice point. Then each particle is assigned a spin σi ∈ {±1}. The q-state Potts model is a generalization of the Ising model, where each spin σi may take on q ≥3 number of states {0,··· ,q−1}. Both models have temperature T and an externally applied magnetic field h as parameters. Many statistical and physical properties of the q- state Potts model can be derived by studying its partition function. This includes phase transitions as T and/or h are varied.

The celebrated Lee-Yang Theorem characterizes such phase transitions of the 2-state Potts model (the Ising model). This theorem does not hold for q > 2. Thus, phase transitions for the Potts model as h is varied are more complicated and mysterious. We give some results that characterize the phase transitions of the 3-state Potts model as h is varied for constant T on the binary rooted Cayley tree. Similarly to the Ising model, we show that for fixed T >0the 3-state Potts model for the ferromagnetic case exhibits a phase transition at one critical value of h or not at all, depending on T. However, an interesting new phenomenon occurs for the 3-state Potts model because the critical value of h can be non-zero for some range of temperatures. The 3-state Potts model for the antiferromagnetic case exhibits a phase transition at up to two critical values of h.

The recursive constructions of the (n + 1)st level Cayley tree from two copies of the nth level Cayley tree allows one to write a relatively simple rational function relating the Lee-Yang zeros at one level to the next. This allows us to use techniques from dynamical systems.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}