Lithium Storage Mechanisms and Electrochemical Behavior of Molybdenum Disulfide

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.M.E.
Degree Year
2024
Department
Mechanical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

This study investigates the electrochemical behavior of molybdenum disulfide (MoS2) when utilized as an anode material in Li-ion batteries, particularly focusing on the intriguing phenomenon of extra capacity observed beyond theoretical expectations and the unique discharge curve of the first cycle. Employing a robust suite of advanced characterization methods such as in situ and ex situ X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), the research unravels the complex structural and chemical evolution of MoS2 throughout its cycling process. A pivotal discovery of the research is the identification of a distinct lithium intercalation mechanism in MoS2, which leads to the formation of reversible LixMoS2. These phases play a crucial role in contributing to the extra capacity observed in the MoS2 electrode. Additionally, density functional theory (DFT) calculations have been utilized to explore the potential for overlithiation within MoS2, suggesting that Li5MoS2 could be the most energetically favorable phase during the lithiation-delithiation process. This study also explores the energetics of a Li-rich phase forming on the surface of Li4MoS2, indicating that this configuration is energetically advantageous and could contribute further to the extra capacity. The incorporation of reduced graphene oxide (RGO) as a conductive additive in MoS2 electrodes, demonstrating that RGO notably improves the electrochemical performance, rate capability, and durability of the electrodes. These findings are supported by experimental observations and are crucial for advancing the understanding of MoS2 as a high-capacity anode material. The implications of this research are significant, offering a pathway to optimize the design and composition of electrode materials to exceed traditional performance and longevity limits in Li-ion batteries.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}