Automated Quantitative Analysis of Nerve Fiber Conduction Velocity

Date
2015-04-17
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

The baroreflex (BRX) is essential for reliable autonomic control of arterial blood pressure. Central to BRX function is a rapid, negative feedback control of heart rate. Arterial pressure sensors known as baroreceptors (BR) encode heart rate and blood pressure information into patterns of neural discharge that is conveyed to the central nervous system via a network of sensory afferent nerve fibers. These BR fibers are broadly classified as myelinated A-fibers with diameters in the range of 1-10 μm and unmyelinated Cfibers with diameters typically less than 1 μm. Fiber diameter and conduction velocity are related with the large A-fibers being much faster (> 10 m/sec) than the smaller diameter C-fibers (< 1 m/sec). Recently, our lab has documented an additional phenotype of myelinated BR afferents termed Ah-fibers that are notably present in female; but only rarely observed in male rats. In response to an electrical stimulus, the nerve fibers produce a compound action potential (CAP) that propagates away from the stimulation site. The CAP of each fiber type is observable in the evoked waveform on account of the differing conduction velocities. As Ah-fibers have conduction velocities in the range of 10 m/sec - 2 m/sec, the resulting CAP is clearly separated in time from the faster A-fibers and much slower C-fibers. Root-mean-square analysis of these distinct time segments provides a quantitative measure of the total signal energy from each of the A-, Ah-, and C-type fibers. This project sought to create MATLAB scripts that would import nerve recording files from both male and female rats and automate the energy analysis in an efficient and reliable manner. Doing so not only facilitates the analysis of these large data files, but also reduces the possibility for biases and errors that can occur during a manual measurement of nerve activity.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kyle D. Haas, Grace Santa Cruz Chavez, John Schild. (2015, April 17). Automated Quantitative Analysis of Nerve Fiber Conduction Velocity. Poster session presented at IUPUI Research Day 2015, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}