Active geometric model : multi-compartment model-based segmentation & registration

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014-08-26
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2013
Department
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

We present a novel, variational and statistical approach for model-based segmentation. Our model generalizes the Chan-Vese model, proposed for concurrent segmentation of multiple objects embedded in the same image domain. We also propose a novel shape descriptor, namely the Multi-Compartment Distance Functions or mcdf. Our proposed framework for segmentation is two-fold: first, several training samples distributed across various classes are registered onto a common frame of reference; then, we use a variational method similar to Active Shape Models (or ASMs) to generate an average shape model and hence use the latter to partition new images. The key advantages of such a framework is: (i) landmark-free automated shape training; (ii) strict shape constrained model to fit test data. Our model can naturally deal with shapes of arbitrary dimension and topology(closed/open curves). We term our model Active Geometric Model, since it focuses on segmentation of geometric shapes. We demonstrate the power of the proposed framework in two important medical applications: one for morphology estimation of 3D Motor Neuron compartments, another for thickness estimation of Henle's Fiber Layer in the retina. We also compare the qualitative and quantitative performance of our method with that of several other state-of-the-art segmentation methods.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}