Multi-Modality Plasma-Based Detection of Minimal Residual Disease in Triple-Negative Breast Cancer

Date
2019-07
Language
American English
Embargo Lift Date
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Medical & Molecular Genetics
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Triple-negative breast cancers (TNBCs) are pathologically defined by the absence of estrogen, progesterone, and HER2 receptors. Compared to other breast cancers, TNBC has a relatively high mortality. In addition, TNBC patients are more likely to relapse in the first few years after treatment, and experiencing a shorter median time from recurrence to death. Detecting the presence of tumor in patients who are technically “disease-free” after neoadjuvant chemotherapy and surgery as early as possible might be able to predict recurrence of patients, and then provide timely intervention for additional therapy. To this end, I applied the analysis of “liquid biopsies” for early detection of minimal residual disease (MRD) on early-stage TNBC patients using next-generation sequencing. For the first part of this study, I focused on detecting circulating tumor DNA (ctDNA) from TNBC patients after neoadjuvant chemotherapy and surgery. First, patient-specific somatic mutations were identified by sequencing primary tumors. From these data, 82% of the patients had at least one TP53 mutation, followed by 16% of the patients having at least one PIK3CA mutation. Next, I sequenced matched plasma samples collected after surgery to identify ctDNA with the same mutations. I observed that by detecting corresponding ctDNA I was able to predict rapid recurrence, but not distant recurrence. To increase the sensitivity of MRD detection, in the second part I developed a strategy to co-detect ctDNA along with circulating tumor RNA (ctRNA). An advantage of ctRNA is its active release into the circulation from living cancer cells. Preliminary data showed that more mutant molecules were identified after incorporating ctRNA with ctDNA detection in a metastatic breast cancer setting. A validation study in early-stage TNBC is in progress. In summary, my study suggests that co-detection of ctDNA and ctRNA could be a potential solution for the early detection of disease recurrence.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2021-08-05